资源类型

期刊论文 132

年份

2024 2

2023 26

2022 18

2021 16

2020 5

2019 11

2018 9

2017 9

2016 2

2015 4

2014 2

2013 5

2012 2

2011 3

2010 3

2009 3

2008 3

2007 4

2006 1

2001 1

展开 ︾

关键词

MOF基催化剂 1

NOG小鼠 1

三维细观模拟 1

丙型肝炎病毒核心蛋白 1

供体来源的CD19靶向T细胞输注 1

再生混凝土 1

劈拉试验 1

协同发展 1

原生混凝土 1

双重作用 1

反式脂肪酸 1

可持续农业体系 1

可搜索加密;云存储;密钥聚合加密;数据共享 1

可靠度 1

吸附 1

吸附层 1

基于质谱的免疫肽组学 1

多孔碳 1

多黏菌素 1

展开 ︾

检索范围:

排序: 展示方式:

Seismic analysis of semi-gravity RC cantilever retaining wall with TDA backfill

Il-Sang AHN, Lijuan CHENG

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 455-469 doi: 10.1007/s11709-017-0392-z

摘要: The seismic behavior of Tire Derived Aggregate (TDA) used as backfill material of 6.10 m high retaining walls was investigated based on nonlinear time-history Finite Element Analysis (FEA). The retaining walls were semi-gravity reinforced concrete cantilever type. In the backfill, a 2.74 m thick conventional soil layer was placed over a 3.06 m thick TDA layer. For comparison purpose, a conventional all soil-backfill model was also developed, and the analysis results from the two models under the Northridge and Takatori earthquakes were compared. The FEA results showed that both models did not experience major damage in the backfill under the Northridge earthquake. However, under the Takatori earthquake, the TDA-backfill model developed substantially large displacement in the retaining walls and in the backfill compared with the soil-backfill model. Regions of large plastic strain were mainly formed in the TDA layer, and the soil over the TDA layer did not experience such large plastic strain, suggesting less damage than the soil-backfill model. In addition, the acceleration on the backfill surface of the TDA-backfill model decreased substantially compared with the soil-backfill model. If an acceleration sensitive structure is placed on the surface of the backfill, the TDA backfill may induce less damage to it.

关键词: TDA (Tire Derived Aggregate)     scrap tires     retaining wall     seismic analysis     Finite Element Analysis    

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1016-1024 doi: 10.1007/s11709-021-0751-7

摘要: This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.

关键词: kaolin     physical modeling tests     stabilization     numerical modeling    

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1409-3

摘要:

• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis.

关键词: Waste tire     MFCs     Micro-electrolysis     Anammox     Feammox    

Heavy vehicle dynamics with balanced suspension based on enveloping tire model

Yongjie LU, Shaopu YANG, Shaohua LI

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 476-482 doi: 10.1007/s11465-010-0120-z

摘要: The tire-road contact mechanics is the key problem in vehicle ride comfort and road-friendliness research. A flexible roller contact (FRC) tire model with the enveloping property is introduced to reflect the contact history between the tire and the road. Based on D’Alembert principle, an integral balanced suspension (IBS) model is established, considering mass and moment of? inertia of? the stabilizer rod. ?The sprung mass accelera- tion and tire dynamic force for balanced suspension and the traditional quarter-vehicle model are compared respectively for frequency and time domain responses. It is concluded that the quarter-vehicle model can be used to evaluate the ride comfort of vehicles; however, it has some limitations in evaluating the vehicle road-friendliness. Then, the dynamics performances for IBS model are analyzed with the single point contact (SPC) model and FRC model, respectively. These works are expected to propose a new idea for the vehicle-road interaction research.

关键词: heavy vehicle     integral balanced suspension     enveloping properties     ride comfort     road-friendliness    

Experimental Research on Friction of Vehicle Tire Rubber

GUO Kong-hui, ZHUANG Ye, CHEN Shih-ken, WILLLAM Lin

《机械工程前沿(英文)》 2006年 第1卷 第1期   页码 14-20 doi: 10.1007/s11465-005-0001-z

摘要:

A newly developed tire rubber friction test machine is introduced. Friction test method of tire rubber is provided. Test data of tire rubber friction on concrete and icy road surfaces are obtained and analyzed. The effect of different road surface, ambient temperature, contact pressure, and slip velocity on friction coefficient is apprehended. The dynamic friction is introduced to tire semi-empirical modeling, and the accuracy of the model is improved. A way of forecasting tire property on high-rolling speed using data from low-rolling speed tire test is illustrated.

关键词: different     property     temperature     low-rolling     pressure    

轮胎动力学协同发展策略研究

郭孔辉,卢荡,吴海东

《中国工程科学》 2018年 第20卷 第1期   页码 91-96 doi: 10.15302/J-SSCAE-2018.01.013

摘要:

在汽车及飞机的自主发展中,轮胎动力学是个重要瓶颈。本文对比了国内外轮胎动力学的发展状况,指出面临当前愈加激烈的国际竞争,我国轮胎动力学的发展存在较大挑战。笔者在分析了轮胎动力学测试、仿真及应用技术的特点后,提出了协同发展我国轮胎动力学的策略及建议。

关键词: 轮胎动力学     汽车     飞机     协同发展     策略    

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 158-168 doi: 10.1007/s11709-016-0374-6

摘要: A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

关键词: mortar-aggregate interface     push-out test     elevated temperatures     modeled concrete (MC)     modeled recycled aggregate concrete (MRAC)    

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1415-1425 doi: 10.1007/s11709-021-0786-9

摘要: To study the behavior of coral aggregate concrete (CAC) column under axial and eccentric compression, the compression behavior of CAC column with different types of steel and initial eccentricity (ei) were tested, and the deformation behavior and ultimate bearing capacity (Nu) were studied. The results showed that as the ei increases, the Nu of CAC column decreases nonlinearly. Besides, the steel corrosion in CAC column is severe, which reduces the steel section and steel strength, and decreases the Nu of CAC column. The durability of CAC structures can be improved by using new organic coated steel. Considering the influence of steel corrosion and interfacial bond deterioration, the calculation models of Nu under axial and eccentric compression were presented.

关键词: coral aggregate concrete column     axial compression     eccentric compression     steel corrosion     calculation model    

Chloride ingress and macro-cell corrosion of steel in concrete made with recycled brick aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1358-1371 doi: 10.1007/s11709-021-0769-x

摘要: An investigation on chloride ingress and macro-cell corrosion of steel bars in concrete made with recycled brick aggregate (RBA) was carried out. As control cases, virgin brick aggregate (BA) and stone aggregate (SA) were also investigated. Both cylindrical and cracked prism specimens were studied for 16 different cases. The prism specimens were made with a segmented steel bar providing electrical connection from outside of the specimens to measure macro-cell corrosion current continuously under seawater splash exposure for a period of 30 d using a data logger. Cylindrical specimens were submerged in 3% NaCl solution at a temperature of 40°C to investigate chloride ingress in concrete made with RBA, BA, and SA after 120 and 180 d. Half-cell potential, corrosion area, and depths of corrosion were also investigated. The chloride ingress as well as corrosion of steel bars in concrete made with the different types of aggregate is ordered as RBA > BA > SA.

关键词: brick aggregate     chloride ingress     macro-cell corrosion     recycled brick aggregate    

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1400-1414 doi: 10.1007/s11709-021-0779-8

摘要: Aggregates are the biggest contributor to concrete volume and are a crucial parameter in dictating its mechanical properties. As such, a detailed experimental investigation was carried out to evaluate the effect of sand-to-aggregate volume ratio (s/a) on the mechanical properties of concrete utilizing both destructive and non-destructive testing (employing UPV (ultrasonic pulse velocity) measurements). For investigation, standard cylindrical concrete samples were made with different s/a (0.36, 0.40, 0.44, 0.48, 0.52, and 0.56), cement content (340 and 450 kg/m3), water-to-cement ratio (0.45 and 0.50), and maximum aggregate size (12 and 19 mm). The effect of these design parameters on the 7, 14, and 28 d compressive strength, tensile strength, elastic modulus, and UPV of concrete were assessed. The careful analysis demonstrates that aggregate proportions and size need to be optimized for formulating mix designs; optimum ratios of s/a were found to be 0.40 and 0.44 for the maximum aggregate size of 12 and 19 mm, respectively, irrespective of the W/C (water-to-cement) and cement content.

关键词: aggregates     non-destructive testing     sand-to-aggregate volume ratio (s/a)     maximum aggregate size (MAS)    

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 725-740 doi: 10.1007/s11709-018-0510-6

摘要: A study on the punching shear behavior of 8 slabs with recycled aggregate concrete (RAC) was carried out. The two main factors considered were the recycled coarse aggregate (RCA) replacement percentage and the steel fibre volumetric ratio. The failure pattern, load-displacement curves, energy consumption and the punching shear capacity of the slabs were intensively investigated. It was concluded that the punching shear capacity, ductility and energy consumption decreased with the increase of RCA replacement percentage. Research findings indicated that the incorporation of steel fibres could not only improve the energy dissipation capacity and the punching shear capacity of the slab, but also effectively improve the integrity of the slab tension surface and thereby changing the trend from typical punching failure pattern to bending-punching failure pattern. On the basis of the test, the punching shear capacity formula of RAC slabs with and without steel fibres was proposed and discussed.

关键词: recycled aggregate concrete     steel fibres     slab     punching shear     recycled coarse aggregates replacement percentage    

Quantification of coarse aggregate shape in concrete

Xianglin GU,Yvonne TRAN,Li HONG

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 308-321 doi: 10.1007/s11709-014-0266-6

摘要: The objective of this study is to choose indices for the characterization of aggregate form and angularity for large scale application. For this purpose, several parameters for aggregate form and angularity featured in previous research are presented. Then, based on these established parameters, 200 coarse quartzite aggregates are analyzed herein by using image processing technology. This paper also analyzes the statistical distributions of parameters for aggregate form and angularity as well as the correlation between form and angularity parameters. It was determined that the parameters for form or angularity of coarse aggregates could be fitted by either normal distribution or log-normal distribution at a 95% confidence level. Some of the form parameters were influenced by changes in angularity characteristics, while aspect ratio and angularity using outline slope, area ratio and radius angularity index, and aspect ratio and angularity index were independent of each other, respectively; and consequently, the independent parameters could be used to quantify the aggregate form and angularity for the purpose to study the influence of aggregate shape on the mechanical behavior of concrete. Furthermore, results from this study’s in-depth investigations showed that the aspect ratio and the angularity index can further understanding of the effects of coarse aggregates form and angularity on concrete mechanical properties, respectively. Finally, coarse aggregates with the same content, type and surfaces texture, but different aspect ratios and angularity indices were used to study the influence of coarse aggregate form and angularity on the behavior of concrete. It was revealed that the splitting tensile strength of concrete increased with increases in the aspect ratio or angularity index of coarse aggregates.

关键词: coarse aggregate     form     angularity     digital image analysis     statistical distribution     splitting tensile strength    

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 754-772 doi: 10.1007/s11709-021-0711-2

摘要: Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

关键词: sea sand recycled aggregate concrete     recycled coarse aggregate replacement percentage     sea sand chloride ion content     long-term mechanical properties     stress–strain curve    

Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis

Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1561-1572 doi: 10.1007/s11709-020-0640-5

摘要: The physio-chemical changes in concrete mixes due to different coarse aggregate (natural coarse aggregate and recycled coarse aggregate (RCA)) and mix design methods (conventional method and Particle Packing Method (PPM)) are studied using thermogravimetric analysis of the hydrated cement paste. A method is proposed to estimate the degree of hydration ( ) from chemically bound water ( ). The PPM mix designed concrete mixes exhibit lower . Recycled aggregate concrete (RAC) mixes exhibit higher and after 7 d of curing, contrary to that after 28 and 90 d. The chemically bound water at infinite time ( ) of RAC mixes are lower than the respective conventional concrete mixes. The lower , Ca(OH) bound water, free Ca(OH) content and FT-IR analysis substantiate the use of pozzolanic cement in the parent concrete of RCA. The compressive strength of concrete and cannot be correlated for concrete mixes with different aggregate type and mix design method as the present study confirms that the degree of hydration is not the only parameter which governs the macro-mechanical properties of concrete. In this regard, further study on the influence of interfacial transition zone, voids content and aggregate quality on macro-mechanical properties of concrete is needed.

关键词: recycled aggregate concrete     Particle Packing Method     thermogravimetric analysis     chemically bound water     degree of hydration     Fourier transform infrared spectroscopy    

Comments on “Prediction on CO uptake of recycled aggregate concrete”, Frontiers of Structural and Civil

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1504-1506 doi: 10.1007/s11709-021-0782-0

摘要: A methodology to compute the CO2 uptake of recycled aggregate concrete is proposed in the commented paper. Besides some typos in several formulas, it is found that the approach to estimate the specific surface area of the recycled aggregates is not correct. This issue has some impact in the conclusions of the commented paper. Therefore, aiming to improve the understanding, accuracy and findings of the commented paper, an alternative approach to estimate the specific surface area of the recycled aggregates, as well as an erratum of the formulas and revised conclusions are suggested.

标题 作者 时间 类型 操作

Seismic analysis of semi-gravity RC cantilever retaining wall with TDA backfill

Il-Sang AHN, Lijuan CHENG

期刊论文

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

期刊论文

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled

期刊论文

Heavy vehicle dynamics with balanced suspension based on enveloping tire model

Yongjie LU, Shaopu YANG, Shaohua LI

期刊论文

Experimental Research on Friction of Vehicle Tire Rubber

GUO Kong-hui, ZHUANG Ye, CHEN Shih-ken, WILLLAM Lin

期刊论文

轮胎动力学协同发展策略研究

郭孔辉,卢荡,吴海东

期刊论文

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

期刊论文

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

期刊论文

Chloride ingress and macro-cell corrosion of steel in concrete made with recycled brick aggregate

期刊论文

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

期刊论文

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

期刊论文

Quantification of coarse aggregate shape in concrete

Xianglin GU,Yvonne TRAN,Li HONG

期刊论文

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

期刊论文

Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis

Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI

期刊论文

Comments on “Prediction on CO uptake of recycled aggregate concrete”, Frontiers of Structural and Civil

期刊论文